Chia đơn thức cho đơn thức lớp 8: Lý thuyết và những dạng toán

Chia đơn thức cho đơn thức lớp 8: Lý thuyết và những dạng toán

Chia đơn thức cho đơn thức là phần tri thức quan trọng học sinh đã được tìm hiểu trong chương trình Toán 8, phân môn Đai số. Bài viết ngày hôm nay, Trường Cao đẳng Tài nguyên và Môi trường miền Trung sẽ tổng hợp lại tất cả những tri thức cần ghi nhớ từ lý thuyết tới những dạng bài tập. những bạn cùng tìm hiểu nhé !

I. những tri thức CẦN GHI NHỚ

Bạn đang xem bài: Chia đơn thức cho đơn thức lớp 8: Lý thuyết và những dạng toán

1. Đơn thức là gì ?

Đơn thức là biểu thức đại số chỉ gồm một số hoặc một biến, một tích giữa những số và những biến.

Ví dụ: 2,3 xy2

3/2x3y2z

cok4DhaYBRd0JbRSwmcTF4PtGbmsNOJ8JlWdDKwu

2. Quy tắc chia đơn thức cho đơn thức

Với A và B là hai đơn thức, B≠0. Ta nói A chia hết cho B nếu như tìm được một đơn thức Q sao cho A = B.Q.

Trong đó:

A là đơn thức bị chia.

B là đơn thức chia.

Q là đơn thức thương (hay gọi là thương)

Kí hiệu: Q = A : B

Quy tắc:

Nhớ lại tri thức cũ: Ở lớp 7 ta biết: Với x≠0; m, n ∈ N; m ≥ n thì:

xm : xn = xm – n nếu như m>n

xm : xn = 1 nếu như m=n

Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau:

+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.

+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.

+ Nhân những kết quả vừa tìm được với nhau.

Ví dụ: Thực hiện phép tính

a, (- 2)5:(- 2)3.

b, (xy2)4:(xy2)2

Hướng dẫn:

a) Ta có: (- 2)5:(- 2)3 = (- 2)5 – 3 = (- 2)2 = 4.

b) Ta có: (xy2)4:(xy2)2 = x4y8😡2y4 = x4 – 2.y8 – 4 = x2y4.

II. những DẠNG BÀI TẬP CHIA ĐƠN THỨC CHO ĐƠN THỨC

Bài 1: Tính (-7)20 : (-7)18

A. 49     B. –49

C. – 14     D. 14

Đáp án:

Ta có: (-7)20 : (-7)18 = (-7)20 – 18 = (-7)2 = 49

chọn lựa đáp án A

Bài 2: Kết quả của phép tính (- 3)6:(- 2)3 là?

A. 729/8 B. 243/8 C. -729/8 D. -243/8

Ta có: (- 3)6:(- 2)3 = 36:(- 23) = 729:(- 8) = – 729/8.

chọn lựa đáp án C.

Bài 3: Kết quả nào sau đây đúng?

chia don thuc cho don thuc 00

chia don thuc cho don thuc 01

⇒ Đáp án D sai.

chọn lựa đáp án C.

Bài 4: Chứng mình rằng trị giá của biểu thức sau không phụ thuộc vào trị giá của biến y (x≠0; y≠0) với biểu thức đó là A = 2/3x2y3:(- 1/3xy) + 2x(y – 1)(y + 1)

Hướng dẫn:

Ta có A = 2/3x2y3:(- 1/3xy) + 2x(y – 1)(y + 1) = – 2x2 – 1y3 – 1 + 2x(y – 1)(y + 1)

= – 2xy2 + 2x(y2 – 1) = – 2xy2 + 2xy2 – 2x = – 2x

⇒ trị giá của biểu thức A không phụ thuộc vào biến y

Bài 5: Tính trị giá của những biểu thức sau

a) P = 12x4y2:(- 9xy2) tại x= -3, y= 1,005.

b) Q = 3x4y3:2xy2 tại x= 2, y= 1.

Hướng dẫn:

a) Ta có P = 12x4y2:(- 9xy2) = 1/2 – 9x4 – 1y2 – 2 = – 4/3x3

Với x= -3, y= 1,005 ta có P = – 4/3(- 3)3 = 36.

Vậy P = 36

b) Ta có Q = 3x4y3:2xy2 = 3/2x4 – 1y3 – 2 = 3/2x3y.

Với x= 2, y= 1 ta có Q = 3/2( 2 )3.1 = 12.

Vậy Q = 12

Bài 6:

Làm tính chia:

a) 5x2y4 : 10x2y;

b) 3/4x3y3 : (-1/2x2y2);

c) (-xy)10 : (-xy)5.

Hướng dẫn giải

1677039756 855 1

 

Bài 7: Làm tính chia:

a, 18x2y2z : 6xyz

b, 5a3b : (-2a2b)

c, 27x4y2z : 9x4y

Lời giải:

a, 18x2y2z : 6xyz = (18 : 6)(x2 : x)(y2 : y)(z : z) = 3xy

b, 5a3b : (-2a2b) = 5 : (-2)(a3 : a2)(b : b) = – 5/2 a

c, 27x4y2z : 9x4y = (27 : 9)(x4 : x4)(y2 : y).z = 3yz

Bài 8: Tìm số tự nhiên n để mỗi phép chia sau là phép chia hết:

a, x4 : xn

b, xn : x3

c, 5xny3 : 4x3y2

d, xnyn+1 : x2y5

Lời giải:

x4 : xn = x4-n là phép chia hết nên 4 – n ≥ 0 ⇒ 0 ≤ n ≤ 4

suy ra: n ∈ {0; 1; 2; 3; 4}

xn : x3 = xn- 3 là phép chia hết nên n – 3 ≥ 0 ⇒ n ≥ 3

5xny3 : 4x3y2 = 54 (xn : x2)(y3 : y2) = 54 xn-2 là phép chia hết

Suy ra: n – 2 ≥ 0 ⇒ n ≥ 2

xnyn + 1 : x2y5 = (xn : x2)(yn+1 : y5) = xn-2.yn-4 là phép chia hết

suy ra: n – 4 ≥ 0 ⇒ n ≥ 4

Bài 9: Tính trị giá của biểu thức sau:

(- x2y5)2 : (- x2y5) tại x = 1/2 và y = – 1

Lời giải:

Ta có: (- x2y5)2 : (- x2y5) = – x2y5

Thay x = 1/2 và y = – 1 vào biểu thức ta được:

-(1/2 )2.(-1)5 = -1/4 .(-1) = 1/4

Bài 10:

Tính trị giá của biểu thức 15x4y3z2 : 5xy2zvới x = 2, y = -10, z = 2004

hướng dẫn giải:

15x4y3z2 : 5xy2z2 với x = 2, y = -10, z = 200

Ta có 15x4y3z2 : 5xy2z= 3 . x4 – 1 . y3 – 2 . z2 – 2 = 3x3y

Tại x = 2, y = -10, z = 2004

Ta được: 3 . 23(-10) = 3 . 8 . (-10) = -240.

Bài 11: Làm tính chia:

a, x2yz : xyz

b, x3y4 : x3y

Lời giải:

a, x2yz : xyz = (x2 : x)(y : y)(z : z) = x

b, x3y4 : x3y = (x3 : x3)(y4 : y) = y3

Bài 12: Làm tính chia:

a, (x + y): (x + y)

b, (x – y)5 : (y – x)4

c, (x – y + z)4 : (x – y + z)3

Lời giải:

a, (x + y)2 : (x + y) = x + y

b, (x – y)5 : (y – x)4 = (x – y)5 : (x – y)4 = x – y

c, (x – y + z): (x – y + z)3 = (x – y + z)

Vậy là những bạn vừa được tìm hiểu về chuyên đề chia đơn thức cho đơn thức toán 8. hy vọng những bạn đã dược ôn lại quy tắc chia đơn thức cho đơn thức và những dạng toán thường gặp. hứa hẹn gặp lại những bạn trong những bài viết sau nhé ! Xem thêm 7 hằng đáng thức đáng nhớ tại đường link này em nhé !

Bản quyền bài viết thuộc Trường Cao đẳng Tài nguyên và Môi trường miền Trung. Mọi hành vi sao chép đều là gian lận!

Nguồn chia sẻ: https://cmm.edu.vn

https://cmm.edu.vn/chia-don-thuc-cho-don-thuc-lop-8-ly-thuyet-va-cac-dang-toan/

Trích nguồn: Cao đẳng Tài nguyên và Môi trường miền Trung
Danh mục: Giáo dục

Related Posts