Học giả Ấn Độ: Phương trình thế kỷ của Einstein “thật vô lý”
Một học giả Ấn Độ đã tuyên bố trên một trang báo quốc tế rằng phương trình nổi tiếng E=mc2 của Albert Einstein không hoàn toàn đúng trong tất cả những điều kiện.
Phương trình thể hiện Sự tương đương giữa khối lượng và năng lượng năm 1905 là một công thức nổi tiếng của Einstein.
Bạn đang xem bài: Công thức Einstein – Trường Cao đẳng Tài nguyên và Môi trường miền Trung
Phương trình đó được viết như sau:
E=mc2 (trong đó: E là năng lượng, m là khối lượng, c là tốc độ ánh sáng trong chân không).
Công thức này tức là: Khối lượng và năng lượng tỉ lệ thuận với nhau theo hằng số c. Năng lượng có thể chuyển thành khối lượng và trái lại.
Ajay Sharma – một nhà nghiên cứu tại Shimla kiêm trợ lý giám đốc về giáo dục cho chính quyền ở bang Himachal Pradesh, cho hay phương trình này chưa đầy đủ.
Bài báo kỹ thuật của ông nghiên cứu về phương trình E=mc2 và một số thử nghiệm đặc biệt khác đã được Đại học Kỹ thuật Bauman Moscow Nhà nước (Nga) công bố vào tháng trước.
Ông nói rằng: “Thuyết này chỉ đúng trong những điều kiện đặc biệt như số sóng ánh sáng, cường độ năng lượng ánh sáng, những góc sóng phát và véc tơ vận tốc tức thời tương đối”.
Einstein đã chỉ xem xét 2 sóng ánh sáng có năng lượng như nhau, được phát ra theo hướng ngược nhau, với véc tơ vận tốc tức thời tương đối đều. Vậy những trường hợp khác thì sao? Ông Sharma tiếp lời.
E = mc2 được suy ra từ công thức L = mc2, Einstein đã quy chụp E (tất cả những loại năng lượng) với L (năng lượng ánh sáng). “Điều này thật vô lý,” ông nói.
Bài báo cho biết W.L. Fadner – một nhà báo người Mỹ chuyên viết về Vật lý – đã chỉ ra chắc chắn Einstein đã không đề cập tới E trong thuyết tương đối

Cuốn sách của Sharma do Nhà xuất bản Khoa học Quốc tế Cambridge xuất bản- “Beyond Einstein và E = mc2” – viết rằng Einstein không phải là người trước hết đưa ra thuyết tương đối. Ý tưởng này xuất phát từ một tài liệu sẵn có mà tạp chí Đức Annalen de Physik công bố vào năm 1905.
Ông Sharma cho biết: “Nhiều người sẽ rất ngạc nhiên khi biết rằng dự án của Einstein không được nghiên cứu kỹ lưỡng trước khi công bố.
tiên đề trước hết của thuyết tương đối tương tự một ví dụ của Galileo vào năm 1632 trong cuốn ‘hội thoại giữa hai hệ thống toàn cầu chính’”.
Theo ông, Einstein đã tận dụng thời cơ này để công bố dự án của Galileo (Nguyên lý tương đối, 1632), Poincare (Tốc độ ánh sáng là hằng số, 1898), Lorentz (Variation of Mass etc, 1892), Larmer (Thời gian giãn nở, 1897), và Fitzegerald (Độ co chiều dài, 1889) dưới tên của ông.
Phương trình E=mc2 của Einstein chưa đầy đủ. vì vậy những nhà khoa học phải nghiên cứu một cách thật thận trọng để hoàn thiện nó. Ông Sharma tự tin nói, chắc chắn nghiên cứu mới sẽ hợp lý hơn.

Sự tương đương khối lượng–năng lượng
Trong vật lý học, sự tương đương khối lượng–năng lượng là khái niệm nói về việc khối lượng của vật thể được đo bằng lượng năng lượng của nó. Năng lượng nội tại toàn phần E của vật thể ở trạng thái nghỉ bằng tích khối lượng nghỉ của nó m với một hệ số bảo toàn thích hợp để biến đổi đơn vị của khối lượng thành đơn vị của năng lượng. nếu như vật thể không đứng im tương đối với quan sát viên thì lúc đó ta phải tính tới hiệu ứng tương đối tính. trường hợp đó, m được tính theo khối lượng tương đối tính và E trở thành năng lượng tương đối tính của vật thể. Albert Einstein đề xuất công thức tương đương khối lượng-năng lượng vào năm 1905 trong những bài báo của Năm Kỳ diệu với tiêu đề Quán tính của một vật có phụ thuộc vào năng lượng trong nó? (“Does the inertia of a body depend upon its energy-content?”) Sự tương đương được mô tả bởi phương trình nổi tiếng
E=mc2

Với E là năng lượng, m là khối lượng, và c là tốc độ ánh sáng trong chân không. Hai vế của công thức có thứ nguyên bằng nhau và không phụ thuộc vào hệ thống đo lường. Ví dụ, trong nhiều hệ đơn vị tự nhiên, tốc độ của ánh sáng (vô hướng) được đặt bằng 1 (‘khoảng cách’/’thời gian’), và công thức trở thành đồng nhất thức E = m (‘khoảng cách’^2/’thời gian’^2)’; và từ đây có thuật ngữ “sự tương đương khối lượng-năng lượng”.
Phương trình E = mc2 cho thấy năng lượng luôn nhân tiện hiện được bằng khối lượng cho dù năng lượng đó ở dưới dạng nào đi chăng nữa. sự tương đương khối lượng–năng lượng cũng cho thấy cần phải phát biểu lại định luật bảo toàn khối lượng, hay hoàn chỉnh hơn đó là định luật bảo toàn năng lượng, nó là định luật thứ nhất của nhiệt động lực học. những lý thuyết ngày nay cho thấy khối lượng hay năng lượng không bị phá hủy, chúng chỉ biến đổi từ dạng này sang dạng khác.
Ứng dụng vào vật lý hạt nhân
Max Planck chỉ ra rằng công thức tương đương khối lượng năng lượng ngụ ý rằng những hệ thống ràng buộc sẽ có khối lượng nhỏ hơn tổng những thành phần của chúng, một khi năng lượng liên kết đã được phép thoát ra. Tuy nhiên, Planck đã suy nghĩ về những phản ứng hóa học, trong đó năng lượng liên kết quá nhỏ để đo lường. Einstein nghĩ rằng những vật liệu phóng xạ như radium sẽ phân phối một bài rà soát về lý thuyết, nhưng mặc dù một lượng lớn năng lượng được phóng thích trên mỗi nguyên tử trong radium, do thời gian bán rã của chất này (1602 năm), chỉ một phần nhỏ những nguyên tử radium phân rã trong một khoảng thời gian có thể đo được bằng thực nghiệm.
Sau khi hạt nhân được phát hiện, những nhà thử nghiệm nhìn thấy rằng năng lượng liên kết rất cao của hạt nhân nguyên tử sẽ cho phép tính toán năng lượng liên kết của chúng, đơn thuần là từ sự khác biệt khối lượng. Nhưng phải tới khi phát hiện ra neutron vào năm 1932 và việc đo khối lượng neutron, phép tính này mới thực sự có thể được thực hiện (xem năng lượng liên kết hạt nhân để tính toán ví dụ). Một lát sau, máy gia tốc Cockcroft từ Walton tạo ra phản ứng biến đổi trước hết (7 3 Li + 1 1 p → 2 4 2 He), xác minh công thức của Einstein với độ chuẩn xác là ± 0,5%. Năm 2005, Rainville và cộng sự. đã công bố một thử nghiệm trực tiếp về sự tương đương năng lượng của khối lượng bị mất trong năng lượng liên kết của neutron với những nguyên tử của những đồng vị silic và lưu huỳnh đặc biệt, bằng cách so sánh khối lượng bị mất với năng lượng của tia gamma phát ra liên quan tới sự bắt giữ neutron. Sự mất mát khối lượng liên kết đã thỏa thuận với năng lượng tia gamma với độ chuẩn xác là ± 0,00004%, thử nghiệm chuẩn xác nhất của E = mc^2 cho tới nay.
Công thức tương đương khối lượng năng lượng được sử dụng để hiểu những phản ứng phân hạch hạt nhân và ngụ ý lượng năng lượng lớn có thể được phóng thích bằng phản ứng chuỗi phân hạch hạt nhân, được sử dụng trong cả vũ khí hạt nhân và năng lượng hạt nhân. Bằng cách đo khối lượng của những hạt nhân nguyên tử khác nhau và trừ đi từ số đó tổng khối lượng của những proton và neutron khi chúng có trọng lượng riêng, người ta sẽ có được năng lượng liên kết chuẩn xác có sẵn trong hạt nhân nguyên tử. Điều này được sử dụng để tính toán năng lượng được phóng thích trong bất kỳ phản ứng hạt nhân nào, như sự khác biệt trong tổng khối lượng của những hạt nhân đi vào và thoát khỏi phản ứng.
Cách để Hiểu về công thức E=mc2
Công thức E=mc2 lần trước hết được biết tới khi được giới thiệu trong một bài báo của Albert Einstein năm 1905 và trở thành công thức nổi tiếng nhất tạo nên tiền đề cho sự đột phá trong khoa học công nghệ sau này. Trong công thức E=mc2, E là năng lượng, m là khối lượng và c là tốc độ ánh sáng trong môi trường chân không. Ngay cả những người không có tri thức cơ bản về vật lý cũng đã từng nghe tới công thức này và, ở mức độ nào đó, biết được tầm tác động của nó, tuy nhiên, phần lớn trong số đó lại chưa nắm được ý nghĩa thực sự của công thức này. Nói một cách đơn thuần, đây là công thức thể hiện mối tương quan giữa năng lượng và vật chất: nhất là việc năng lượng và vật chất là hai dạng khác nhau của cùng một vật. Công thức đơn thuần này đã thay đổi cách mà người ta nhìn nhận về năng lượng và từ đó dẫn tới hàng loạt những bước tiến quan trọng tạo ra những công nghệ hiện đại ngày nay.
Phần 1: Hiểu công thức

1.Xác định những biến trong công thức.
Để hiểu được bất cứ công thức nào, bước trước hết phải nắm được mỗi biến trong công thức đại diện cho cái gì. trường hợp này, E là năng lượng của vật ở trạng thái tĩnh, m là khối lượng của vật và c là véc tơ vận tốc tức thời ánh sáng trong môi trường chân không.
- véc tơ vận tốc tức thời ánh sáng c là một hằng số không đổi có trị giá xấp xỉ 3,00×108 mét trên giây. Trong thuyết tương đối của Einstein, c2 đóng vai trò là nhân tố biến đổi đơn vị thay vì là một hằng số. Vì năng lượng được đo theo đơn vị Joule (J) hoặc kg m2 s-2, việc sử dụng c2 là kết quả của phép tìm hiểu thứ nguyên nhằm đảm bảo mối liên hệ giữa năng lượng và khối lượng là một thứ nguyên.

2.Hiểu năng lượng là gì.
Năng lượng có thể tồn tại ở nhiều dạng như năng lượng nhiệt, điện, hóa học, hạt nhân, v.v. Năng lượng có thể được trao đổi giữa hai hệ, trong đó một hệ sẽ cho năng lượng và một hệ nhận năng lượng.
- Năng lượng không thể tự sinh ra hoặc mất đi mà chỉ có thể chuyển từ dạng này sang dạng khác. Ví dụ, than có rất nhiều năng lượng tiềm năng có thể chuyển thành nhiệt khi bị đốt cháy.

3. Xác định khối lượng
Khối lượng của một vật được xác định là lượng vật chất chứa trong vật đó.
Ngoài ra còn có một vài khái niệm khác về khối lượng. “Khối lượng không đổi” và “khối lượng tương đối” là hai trong số đó. Khối lượng không đổi, như tên của nó, là khối lượng bất biến trong mọi hoàn cảnh. Trong lúc đó, khối lượng tương đối phụ thuộc vào véc tơ vận tốc tức thời của vật. Khối lượng trong công thức E = mc2 là khối lượng không đổi. Đây là một điểm quan trọng trái ngược với quan niệm của nhiều người khi cho thấy rằng khối lượng của vật không thay đổi khi tăng tốc độ.
Cần nhớ rằng khối lượng và trọng lượng là hai khác niệm khác nhau. Trọng lượng là chính là trọng lực của vật, còn khối lượng là lượng vật chất cấu tạo nên vật. Khối lượng chỉ thay đổi khi vật bị biến đổi về mặt vật lý, còn trọng lượng thay đổi phụ thuộc vào trọng lực của môi trường. Khối lượng được đo bằng kilogam (kg), trọng lượng được đo bằng newton (N).
Tương tự như năng lượng, khối lượng không tự sinh ra cũng không tự mất đi mà chỉ chuyển từ dạng này sang dạng khác. Ví dụ, một cục nước đá có thể tan chảy thành dạng lỏng nhưng khối lượng của nó không thay đổi.

4. Khối lượng và năng lượng là hai đại lượng tương đương
Công thức này nêu lên sự tương đồng của khối lượng và năng lượng, đồng thời chỉ ra trong một khối lượng chất nhất định có bao nhiêu năng lượng. Và quan trọng hơn cả, công thức này cho ta thấy rằng một vật có khối lượng nhỏ cũng chứa trong nó một lượng năng lượng vô cùng lớn.
Phần2: vận dụng công thức vào thực tế

- Nguồn gốc của năng lượng sử dụng được.
Phần lớn năng lượng mà con người sử dụng ngày nay sinh ra trong quá trình đốt cháy than đá và khí ga tự nhiên. Khi những nhiên liệu này bị đốt cháy, liên kết tạo thành bởi những electron hóa trị sẽ bị đứt gãy và phóng thích ra năng lượng, nhờ vậy mà con người có thể tận dụng nguồn năng lượng đó cho đời sống.
Lấy năng lượng theo cách này không những kém hiệu quả mà còn gây hại cho môi trường.

2. Sử dụng công thức năng lượng của Einstein để gia tăng hiệu quả của quá trình chuyển hóa năng lượng.
Công thức E=mc2 cho ta thấy rằng hạt nhân của nguyên tử chứa nhiều năng lượng hơn so với những electron hóa trị của nguyên tử đó. Năng lượng phóng thích khi phá vỡ một nguyên tử lớn hơn rất nhiều so với năng lượng phóng thích trong quá trình làm đứt gãy liên kết electron.
Năng lượng hạt nhân cũng dựa trên nguyên lý này. những lò hạt nhân gây ra sự phân hạch (làm những nguyên tử tách nhau ra), và con người sẽ thu lại năng lượng phóng thích từ sự phân hạch đó.

3. Những phát minh công nghệ trở thành sự thực nhờ E=mc2
Công thức E=mc2 đã giúp tạo ra rất nhiều công nghệ mới thú vị mà có nhẽ loài người ngày nay khó có thể sống thiếu chúng, ví dụ như:
Chụp cắt lớp positron (PET) sử dụng phóng xạ để thấy được hình ảnh bên trong thân thể.
Dựa trên công thức này mà những nhà khoa học đã phát triển được những công nghệ truyền thông từ vệ tinh và xe thám hiểm tự động.
Tuổi của cổ vật được xác định bằng phương pháp phóng xạ những-bon, mà bản tính của phương pháp này chính là dựa vào quá trình phân rã phóng xạ theo công thức E=mc2.
Năng lượng hạt nhân là nguồn năng lượng sạch và hiệu quả hơn so với những nguồn năng lượng truyền thống mà con người vẫn khai thác sử dụng.
Ứng dụng của phương trình E = mc2 vào thực tế
Một là, tăng hiệu quả của quá trình chuyển hóa năng lượng dựa vào công thức năng lượng của Einstein. Dựa vào công thức đó, có thể thấy rằng năng lượng của hạt nhân nguyên tử lớn hơn rất nhiều so với những electron của nguyên tử đó. Và khi bị phá vỡ thì năng lượng được phóng thích từ hạt nhân lớn hơn năng lượng được phóng thích từ sự đứt gãy những liên kết electron.
ngày nay, phần lớn năng lượng mà con người sử dụng được phân phối từ quá trình đốt cháy than đá, khí ga trong tự nhiên. lúc đó thì sự liên kết của những electron hóa trị của những nhiên liệu này sẽ bị đứt gãy, từ đó phóng thích ra năng lượng. Và cách này thì không chỉ kém hiệu quả rõ rệt mà còn gây ra những hậu quả khó lường cho môi trường, rõ hơn là tình trạng biến đổi khí hậu, trái đất nóng lên ngày nay. Và nhờ vào công thức của Einstein, những lò năng lượng hạt nhân sẽ phân phối một nguồn năng lượng lớn đáp ứng nhu cầu cho con người dựa vào sự phân hạch của những nguyên tử.

Hai là, xác định tuổi cổ vật bằng đồng vị phóng xạ Carbon 14. bản tính của phương pháp này là dựa vào quá trình phân rã phóng xạ theo công thức E = mc2 mà Einstein đã đưa ra. Và dự án này đã giúp Willard F.Libby (1908 – 1980) đạt giải Nobel Hóa học năm 1960. Và còn rất nhiều ứng dụng khác mà dựa vào công thức của nhà thiên tài vật lý đã đưa ra phục vụ cho cuộc sống của con người.
Mặc dù, việc Einstein đưa ra sức thức cùng với bức thư gửi tổng thống Mỹ đã gián tiếp khiến cho Nhật Bản phải hứng chịu thảm họa hạt nhân, cùng những vấn đề chiến tranh hạt nhân đe dọa hòa bình trên toàn cầu ngày nay. Nhưng cũng không thể phủ nhận những đóng góp của ông trong khoa học vật lý nói riêng và ứng dụng của công thức E = mc2 cho đời sống con người.
Nguồn gốc của phương trình nổi tiếng E = mC2
Những năm đầu của thế kỷ XX, Einstein đã khởi đầu nghiên cứu vềquan hệ giữa ánh sáng không gian và thời gian. Mục đích của ông là góp phần mở rộng ngành nghề nghiên cứu của vật lý học đương thời. Trong quá trình nghiên cứu, ông đã khám phá ra thuyết tương đối hẹp khởi nguồn của vật lý lượng tử hiện đại.
Với sự nghiên cứu cải tiến miệt mài của mình, Thuyết tương đối rộng cũng đã được Einstein cho ra đời để mô tả về vũ trụ bản nguyên. không những thế, khi nghiên cứu dưới góc độ toán học, ông đã thu được kết quả, đó là tính đàn hồi của thời gian và không gian. Trong đó, ông nghĩ rằng vật thể tăng tốc thì tỉ lệ nghịch với thời gian. Khối lượng của vật thể sẽ tăng khi véc tơ vận tốc tức thời của chúng tiến sắp hơn với tốc độ ánh sáng. từ đó, lần trước hết xuất hiện mối quan hệ giữa không gian và thời gian.
Từ mối quan hệ này, ông nghĩ rằng không gian và thời gian chỉ đo được một cách tương đối mà không bao giờ có thể đo được một cách tuyệt đối. Ông đã tiếp tục nghiên cứu trên phương diện toán học và đạt được kết quả đó là khi véc tơ vận tốc tức thời của một vật tiến sắp hơn so với tốc độ ánh sáng, thì khối lượng của vật đó tăng lên và thời gian, độ dài thì tỷ lệ nghịch với khối lượng. Điều này đã được chứng minh bởi thực nghiệm thông qua số đo chuẩn xác của một đồng hồ trên phi cơ phản lực.
nếu như tốc độ của một vật thay đổi thì giữa chúng phải có một mối liên hệ nào đó. Và thuyết tương đối của Einstein đã chỉ rõ vật chất phải là một vật có độ cô đặc vô cùng cao. Từ đó ông khởi đầu xây dựng nên một phương trình toán học thể hiện mối liên hệ giữa vật chất và năng lượng. Ông đã công bố trên một tờ báo về kết quả nghiên cứu của mình. Tuy nhiên, lúc bấy giờ ông lại không thể ngờ rằng phương trình này lại có một ý nghĩa đặc biệt quan trọng, quyết định tới vận mệnh của toàn toàn cầu.
Mãi tới năm 1939, lúc đó phương trình E = mc2 vẫn chỉ nằm trên hồ sơ lý thuyết. Một cột mốc lịch sử đã xảy ra đó Đức quốc xã bị trục xuất khỏi châu Âu. Lúc này, Einstein đã sang Mỹ và nhập quốc tịch ở đây. Với tin tức ông biết được rằng Đức quốc xã đang nghiên cứu một loại vũ khí vô cùng nguy hiểm có sức công phá vô cùng kinh khủng, vì vậy ông đã viết một lá thư cảnh báo Tổng thống Mỹ về vấn đề này, nội dung của bức thư như sau:
Những dự án nghiên cứu mới đây của E. Fermi và Lzilard mà tôi đã nhận được bản thảo, đã khiến tôi nghĩ rằng trong tương lai rất sắp, chất uranium có thể biến thành một nguồn năng lượng mới mẻ và quan trọng. Sự mới mẻ này có thể dẫn tới việc chế tạo bom, và tôi tin rằng chỉ với một trái bom thuộc loại đó, trang bị ở tàu chiến và cho nổ ở cảng biển có thể công phá toàn bộ khu vực cảng và những vùng phụ cận.
Với lá thư mà Einstein gửi cho Roosevelt đã dẫn tới sự ra đời của dự án bom nguyên tử Manhattan sau này. Dựa vào lý thuyết về sự tương đương giữa khối lượng và năng lượng, chỉ với 5 năm sau thì quả bom nguyên tử trước hết đã được thử nghiệm ở Almagordo Reservation (New Mexico). Trong chiến tranh toàn cầu thứ hai, Mỹ đã thả 2 quả bom nguyên tử xuống Hiroshima và Nagasaki xuống Nhật Bản, buộc phe phát xít Nhật đầu hàng vô điều kiện.
Bức thư đặc biệt của Albert Einstein viết lại một công thức nổi tiếng được bán với giá 1,2 triệu USD
Một bức thư do Albert Einstein viết, trong đó ông viết ra sức thức vật lý “sự tương đương khối lượng và năng lượng”- E = mc² nổi tiếng của mình đã được bán đấu giá với số tiền đặc biệt là 1,2 triệu USD sau một cuộc tranh đấu thầu khốc liệt.

Phòng đấu giá RR Auctions có trụ sở tại Boston, nơi xử lý vụ mua bán, cho biết bức thư được bán có trị giá gấp hơn ba lần những gì dự kiến, đã được bán vào đầu tháng này.
Bobby Livingston, Phó chủ toạ điều hành tại RR Auction cho biết: “Đó là một bức thư quan trọng từ cả quan niệm không gian ba chiều và vật lý học”.
Ban đầu, có 5 người đấu giá cho bức thư quý hiếm này, nhưng khi giá của nó này lên tới 700.000 USD, thì chỉ còn lại hai người đấu giá. RR Auctions cho biết người mua bức thư Einstein muốn giấu tên.
Có 4 chứng cứ lưu lại đã được biết về phương trình nổi tiếng được viết bằng chữ viết tay của Einstein, nhưng đây là chứng cứ duy nhất thuộc một bộ sưu tập tư nhân.
Bức thư được giữ bởi con cháu của người đã nhận được bức thư ngày 26 tháng 10 năm 1946, nhà vật lý người Mỹ gốc Ba Lan Ludwik Silberstein.
Einstein sinh ra ở Đức đã trao đổi thư từ với Silberstein, nói với ông một nghi vấn ’có thể được trả lời từ công thức E = mc².
“nghi vấn của ông có thể được trả lời từ công thức E = mc2, mà không có bất kỳ sai phép nào,” Einstein viết trong bức thư viết trên giấy tiêu đề của Đại học Princeton.
Silberstein là một nhà phê bình nổi tiếng và là người thách thức một số lý thuyết của Einstein.
Sau một câu trả lời phức tạp hơn, Einstein tiếp tục kết luận rằng “trước tiên người ta phải có một lý thuyết chứa đựng sự thống nhất chuẩn xác của lực hấp dẫn và điện.” Cuộc đấu giá khởi đầu từ ngày 13/5 và kết thúc vào ngày 20/5.
Việc tìm kiếm “lý thuyết trường thống nhất” này đã tiếp tục tiêu tốn một phần ba cuối cùng của thế cục nhà vật lý phi thường.
Einstein, người qua đời năm 1955, sau này tiếp tục giảng giải lý thuyết tương đối rộng của mình là “theo thuyết tương đối hẹp rằng khối lượng và năng lượng là những biểu hiện khác nhau của cùng một “thứ””.
Hơn nữa, phương trình E bằng m c bình phương, trong đó năng lượng được đặt bằng khối lượng nhân với bình phương véc tơ vận tốc tức thời ánh sáng trong chân không, cho thấy rằng một lượng rất nhỏ khối lượng có thể được chuyển đổi thành một lượng vô cùng lớn năng lượng, và trái lại.
Năm 2018, một bức thư khác của Einstein – “bức thư của Chúa” mà ông gọi là tôn giáo nói chung, và đặc biệt là đạo Do Thái, một thứ “mê tín trẻ con” sinh ra từ ’sự yếu đuối của con người’ – đã được bán đấu giá ở New York với giá 3 triệu USD.
Einstein đã chứng minh sự tương đương giữa khối lượng và năng lượng vào năm 1905 – cái gọi là “năm thần kỳ” của ông, đồng thời cũng chứng kiến việc ông xuất bản những bài báo mang tính đột phá giới thiệu lý thuyết tương đối hẹp, giảng giải đi lại Brown và phác thảo hiệu ứng quang điện.
Thuyết tương đối hẹp – liên quan tới mối quan hệ giữa không gian và thời gian – xác định rằng những định luật vật lý là giống nhau đối với tất cả những vật thể không gia tốc và tốc độ của ánh sáng trong chân không là như nhau cho tất cả những người quan sát, không phụ thuộc vào đi lại của nguồn ánh sáng.
Bản quyền bài viết thuộc Trường Cao đẳng Tài nguyên và Môi trường miền Trung. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: https://cmm.edu.vn
Trích nguồn: Cao đẳng Tài nguyên và Môi trường miền Trung
Danh mục: Giáo dục