Vectơ pháp tuyến là gì? Cách tìm Vectơ pháp tuyến của đường thẳng nhanh nhất

Vectơ pháp tuyến là gì? Cách tìm Vectơ pháp tuyến của đường thẳng nhanh nhất

Vectơ pháp tuyến cũng như cách tìm Vectơ pháp tuyến của đường thẳng là nội dung chương trình trọng tâm của Toán 10, phân môn Hình học. nếu như bạn muốn có thêm nguồn tư liệu quý phục vụ quá trình học tập tốt hơn, hãy chia sẻ ngay bài viết sau đây của Trường Cao đẳng Tài nguyên và Môi trường miền Trung nhé ! Ở đây chúng tôi đã cập nhật đầy đủ những tri thức cần ghi nhớ về chuyên đề này cùng nhiều bài tập vận dụng.

I. LÝ THUYẾT VỀ VECTƠ PHÁP TUYẾN

Bạn đang xem bài: Vectơ pháp tuyến là gì? Cách tìm Vectơ pháp tuyến của đường thẳng nhanh nhất

1. Pháp tuyến là gì ?

Trong hình học, pháp tuyến (hay trực giao) là một đối tượng như đường thẳng, tia hoặc vectơ, vuông góc với một đối tượng nhất định. Ví dụ, trong hai chiều, đường pháp tuyến của một đường cong tại một điểm nhất định là đường thẳng vuông góc với đường tiếp tuyến với đường cong tại điểm đó. Một vectơ pháp tuyến có thể có chiều dài bằng một (một vectơ pháp tuyến đơn vị) hoặc không. Dấu đại số của nó có thể biểu thị hai phía của bề mặt (bên trong hoặc bên ngoài).

2. Vectơ pháp tuyến là gì ?

vecto phap tuyen cua mat phang dientichnet 1

khái niệm: Vectơ n được gọi là vectơ pháp tuyến của đường thẳng  nếu như n 0 và n vuông góc với vectơ chỉ phương của 

Nhận xét:

– nếu như n là một vectơ pháp tuyến của đường thẳng  thì kn (k0)cũng là một vectơ pháp tuyến của , do vậy một đường thẳng có vô số vec tơ pháp tuyến.

– Một đường thẳng được hoàn toàn xác định nếu như biết một và một vectơ pháp tuyến của nó.

II. CÁCH TÌM VECTƠ CỦA PHÁP TUYẾN CỦA ĐƯỜNG THẲNG HAY, CHI TIẾT

1. Phương pháp giải

Cho đường thẳng d: ax + by + c= 0. lúc đó, một vecto pháp tuyến của đường thẳng d là n→( a;b).

Một điểm M(x0; y0) thuộc đường thẳng d nếu như: ax0 + by0 + c = 0.

2. Ví dụ minh họa

Ví dụ 1. Vectơ nào dưới đây là một vectơ pháp tuyến của đường phân giác góc phần tư thứ hai?

A. n→( 1; 1)    B. n→(0; 1)    C. n→(1;0)    D. n→( 1; -1)

Lời giải

Đường phân giác của góc phần tư (II) có phương trình là x + y= 0. Đường thẳng này có VTPT là n→( 1; 1)

lựa chọn A.

Ví dụ 2. Một đường thẳng có bao nhiêu vectơ pháp tuyến?

A. 1.    B. 2.    C. 4.    D. Vô số.

Lời giải

Một đường thẳng có vô số vecto pháp tuyến. những vecto đó cùng phương với nhau.

lựa chọn D.

Ví dụ 3. Vectơ nào dưới đây là một vectơ pháp tuyến của d: 2x- 19y+ 2098= 0?

A. n1 = (2;0).    B. n1 = (2;2098)    C. n1 = (2; -19)    D. n1 = (-19;2098)

Lời giải

Đường thẳng ax+ by+ c= 0 có VTPT là n→( a; b) .

do vậy; đường thẳng d có VTPT n→( 2; -19).

lựa chọn C.

Ví dụ 4: Cho đường thẳng d: x- 2y + 3 = 0. Hỏi đường thẳng d đi qua điểm nào trong những điểm sau?

A. A(3; 0)    B. B(1;2)    C. C(1;2)    D. D(2;-1)

Lời giải

Ta xét những phương án :

+ Thay tọa độ điểm A ta có: 3 – 2.0 + 3 = 0 vô lí

⇒ Điểm A không thuộc đường thẳng d.

+ thay tọa độ điểm B ta có: 1 – 2.2 + 3 = 0

⇒ Điểm B thuộc đường thẳng d.

+ Tương tự ta có điểm C và D không thuộc đường thẳng d.

lựa chọn B.

Ví dụ 5: Cho đường thẳng d: 2x – 3y + 6 = 0. Điểm nào không thuộc đường thẳng d?

A. A(- 3;0)    B. B(0;2)    C. (3;4)    D. D(1;2)

Lời giải

+ Thay tọa độ điểm A ta được: 2.(-3) – 3.0 + 6 = 0

⇒ Điểm A thuộc đường thẳng d.

+ Thay tọa độ điểm B ta được: 2.0 – 3.2 + 6 = 0

⇒ Điểm B thuộc đường thẳng d.

+ Thay tọa độ điểm C ta có: 2.3 – 3.4 + 6 = 0

⇒ Điểm C thuộc đường thẳng d.

+ Thay tọa độ điểm D ta được : 2.1 – 3.2 + 6 = 2 ≠ 0

⇒ Điểm D không thuộc đường thẳng d.

lựa chọn D

Ví dụ 6: Vectơ pháp tuyến của đường thẳng 2x- 3y+ 7= 0 là :

A. n4 = (2; -3)     B. n2 = (2; 3)     C. n3 = (3; 2)     D. n1 = (-3; 2)

Lời giải

Cho đường thẳng d: ax + by + c= 0. lúc đó; đường thẳng d nhận vecto ( a; b) làm VTPT.

⇒ đường thẳng d nhận vecto n→( 2;-3) là VTPT.

lựa chọn A.

Ví dụ 7. Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng song song với trục Ox?

A. n→( 1; 1)     B. n→( 0; -1)     C. n→(1; 0)     D. n→( -1; 1)

Lời giải

Đường thẳng song song với Ox có phương trình là : y + m= 0 ( với m ≠ 0) .

Đường thẳng này nhận vecto n→( 0; 1) làm VTPT.

Suy ra vecto n’→( 0; -1 ) cũng là VTPT của đường thẳng( hai vecto n→ và n’→ là cùng phương) .

lựa chọn B.

Ví dụ 8: Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng song song với trục Oy?

A. n→( 1; 1)     B. n→( 0; -1)     C. n→(2; 0)     D. n→( -1; 1)

Lời giải

Đường thẳng song song với Oy có phương trình là : x + m= 0 ( với m ≠ 0) .

Đường thẳng này nhận vecto n→(1;0) làm VTPT.

Suy ra vecto n’→( 2; 0 ) cũng là VTPT của đường thẳng( hai vecto n→ và n’→ là cùng phương) .

lựa chọn D.

Ví dụ 9. Cho đường thẳng ∆: x- 3y- 2= 0. Vectơ nào sau đây không phải là vectơ pháp tuyến của ∆?

A. n1 = (1; -3) .    B. n2 = (-2; 6) .    C. n3 = (cach tim vecto phap tuyen cua duong thang 1 ; -1).    D. n4 = (3; 1).

Lời giải

Một đường thẳng có vô số VTPT và những vecto đó cùng phương với nhau.

nếu như vecto n→ ≠ 0→ là một VTPT của đường thẳng ∆ thì k.n→ cũng là VTPT của đường thẳng ∆.

∆ : x – 3y – 2 = 0 → nd = (1; -3) → cach tim vecto phap tuyen cua duong thang 2

=> Vecto ( 3; 1) không là VTPT của đường thẳng ∆.

lựa chọn D

III. BÀI TẬP VẬN DỤNG

Câu 1: Đường thẳng d: 12x – 7y + 5 = 0 không đi qua điểm nào sau đây?

A. M(1; 1)    B. N( -1; -1)    C. P(- cach tim vecto phap tuyen cua duong thang 10 ; 0)    D. Q(1; cach tim vecto phap tuyen cua duong thang 11 ) .

Câu 2: Cho tam giác ABC vuông tại A có A( 1; 2) ; B( 2;4). Tìm một VTPT của đường thẳng AC?

A. n→( 1; -2)    B. n→( 2; 4)    C. n→(-2; 1)    D. n→(2; 1)

Câu 3: Cho tam giác ABC cân tại A. Biết A( 1; -4) và M( -2; 3) là trung điểm của BC. Tìm một VTPT của đường thẳng BC?

A. n→( 1; -4)    B. n→( 3;5)    C. n→(3;-7)    D. n→(5;-3)

Câu 4: Cho đường thẳng d: 2x – 5y – 10 = 0. Trong những điểm sau; điểm nào không thuộc đường thẳng d?

A. A(5; 0)    B. B(0; -2)    C. C(-5; -4)    D. D(-2; 3)

Câu 5: Cho đường thẳng d: 2x + 3y – 8 = 0. Trong những vecto sau; vecto nào không là VTPT của đường thẳng d?

A. n1( 4; 6)    B. n2(-2;-3)    C. n3( 4; -6)    D. n4(-6;-9)

Câu 6: Cho đường thẳng d: cach tim vecto phap tuyen cua duong thang 3 = 1. Tìm vecto pháp tuyến của đường thẳng d?

A. n→( 2;3)    B. n→( 3;2)    C. n→( 2; -3)    D. n→( -2;3)

Câu 7: Vectơ nào dưới đây là một vectơ pháp tuyến của d: x – 4y + 2018 = 0

A. n1 = (1; 4).    B. n1 = (4;1)    C. n1 = (2;8)    D. n1 = (-2;8)

Câu 8: Cho đường thẳng d: 3x + 5y + 2018 = 0. Tìm mệnh đề sai trong những mệnh đề sau:

A. d có vectơ pháp tuyến n→ = (3; 5)

B. d có vectơ chỉ phương u→ = (5; -3)

C. d có hệ số góc k = cach tim vecto phap tuyen cua duong thang 4

D. d song song với đường thẳng ∆ : 3x + 5y + 9080 = 0.

Trên đây Trường Cao đẳng Tài nguyên và Môi trường miền Trung đã giới thiệu tới những bạn lý thuyết về Vectơ pháp tuyến và cách tìm Vectơ pháp tuyến của đường thẳng cực hay. hy vọng, đây sẽ là nguồn tư liệu thiết yếu giúp những bạn dạy và học tốt hơn. Xem thêm cách tìm Vectơ chỉ phương của đường thẳng tại đường link này bạn nhé !

Bản quyền bài viết thuộc Trường Cao đẳng Tài nguyên và Môi trường miền Trung. Mọi hành vi sao chép đều là gian lận!

Nguồn chia sẻ: https://cmm.edu.vn

https://cmm.edu.vn/vecto-phap-tuyen-la-gi-cach-tim-vecto-phap-tuyen-cua-duong-thang-nhanh-nhat/

Trích nguồn: Cao đẳng Tài nguyên và Môi trường miền Trung
Danh mục: Giáo dục

Related Posts